The invention relates, in part, to nucleic acid constructs, genetically modified host cells and methods employing such constructs and host cells to increase the production of 3-methyl-2-butenol from IPP. Thus, in some aspects, the invention provides a genetically modified host cell transformed with a nucleic acid construct encoding a fusion protein comprising a phosphatase capable of catalyzing the dephosphorylation of dimethylallyl diphosphate (DMAPP) linked to an IPP isomerase capable of converting IPP to DMAPP, wherein the nucleic acid construct is operably linked to a promoter. In some embodiments, the genetically modified host cell 5 further comprises a nucleic acid encoding a reductase that is capable of converting 3-methyl-2-butenol to 3-methyl-butanol. In some embodiments, the reductase is encoded by a nucleic acid construct introduced into the cell. In some embodiments, the IPP isomerase is a Type I isomerase. In some embodiments, the IPP isomerase is a Type II isomerase. In some embodiments, the host cell is selected from a group of taxonimcal classes consisting of 20 Escherichia, Enterobacter, Azotobacter, Erwinia, Bacillus, Pseudomonas, Klebsiella, Proteus, Salmonella, Serratia, Shigella, Rhizobia, Vitreoscilla, Synechococcus, Synechocystis, and Paracoccus taxonomical classes. In some embodiments, the host cell is an Escherichia coli cell. In some embodiments, the host cell is a fungal cell, such as a yeast cell. In some embodiments, the yeast cell is a Saccharomyces sp. cell. In some embodiments, the host cell is an algal, insect or mammalian cell line. In some embodiments, the phosphatase is nudB from E. coli. In some embodiments, the IPP isomerase is encoded by an idi gene from E. coli or idil gene from Saccharomyces cerevisiae.
Issue/Publication date:
02/12/2015
There are no reviews yet.
Be the first to review “Methods For Increasing Production Of 3-Methyl-2-Butenol Using Fusion Proteins” Cancel reply
There are no reviews yet.